Fast bio-inspired computation using a GPU-based systemic computer
نویسندگان
چکیده
Biology is inherently parallel. Models of biological systems and bio-inspired algorithms also share this parallelism, although most are simulated on serial computers. Previous work created the systemic computer – a new model of computation designed to exploit many natural properties observed in biological systems, including parallelism. The approach has been proven through two existing implementations and many biological models and visualizations. However to date the systemic computer implementations have all been sequential simulations that do not exploit the true potential of the model. In this paper the first ever parallel implementation of systemic computation is introduced. The GPU Systemic Computation Architecture is the first implementation that enables parallel systemic computation by exploiting the multiple cores available in graphics processors. Comparisons with the serial implementation when running two programs at different scales show that as the number of systems increases, the parallel architecture is several hundred times faster than the existing implementations, making it feasible to investigate systemic models of more complex biological systems. 2010 Elsevier B.V. All rights reserved.
منابع مشابه
Fast Cellular Automata Implementation on Graphic Processor Unit (GPU) for Salt and Pepper Noise Removal
Noise removal operation is commonly applied as pre-processing step before subsequent image processing tasks due to the occurrence of noise during acquisition or transmission process. A common problem in imaging systems by using CMOS or CCD sensors is appearance of the salt and pepper noise. This paper presents Cellular Automata (CA) framework for noise removal of distorted image by the salt an...
متن کاملUltra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU
Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study u...
متن کاملModelling Biological Processes Naturally using Systemic Computation: Neural Networks, Genetic Algorithms and Artificial Immune Systems
Natural systems provide unique examples of computation in a form very different from contemporary computer architectures. Biology also demonstrates capabilities such as adaptation, self-repair and selforganisation that are becoming increasingly desirable for our technology. To address these issues a computer model and architecture with natural characteristics is presented. Systemic computation ...
متن کاملAn Approach in Radiation Therapy Treatment Planning: A Fast, GPU-Based Monte Carlo Method
Introduction: An accurate and fast radiation dose calculation is essential for successful radiation radiotherapy. The aim of this study was to implement a new graphic processing unit (GPU) based radiation therapy treatment planning for accurate and fast dose calculation in radiotherapy centers. Materials and Methods: A program was written for parallel runnin...
متن کاملSystemic Computation,
Natural systems provide unique examples of computation in a form very different from contemporary computer architectures. Biology also demonstrates capabilities such as adaptation, fault-tolerance, self-repair and self-organisation that are becoming increasingly desirable for our technology. Such computational properties are of great value for the increasingly complex systems our technologies r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Parallel Computing
دوره 36 شماره
صفحات -
تاریخ انتشار 2010